30 потрясающих изображений, чтобы объяснить ребёнку, каково наше место во Вселенной
Такая подборка будет отличным подспорьем для родителей, желающих показать ребёнку, что наша Земля — это ещё не весь мир.
Этот огромный голубой шар
Соседи
Расстояние между Землёй и Луной (в масштабе). Не так уж и далеко, правда?
А между тем, в это расстояние помещаются все планеты Солнечной системы!
Не забывайте, наша планета очень мала. Эта зелёная клякса показывает, как выглядела бы Северная Америка на Юпитере
В один Сатурн поместятся шесть Земель, ещё и место останется
Вот как выглядели бы кольца Сатурна, если бы окружали Землю
Мы только что посадили зонд на комету. Вот как она выглядит в сравнении с Лос-Анджелесом
А это чтобы напомнить вам, насколько огромно наше Солнце…
Вид с Луны
Вид с Марса
С Сатурна мы кажемся лишь голубой точкой
А с Нептуна вообще едва заметны
Вот Земля в сравнении с Солнцем, которое даже не вмещается на фото целиком!
Вот так выглядит Солнце с Марса. Надо заметить, у нас закаты красивее
Это трудно осознать, но звёзд в космосе больше, чем песчинок на всех пляжах Земли
А наше гигантское Солнце — мелюзга по сравнению с другими звёздами
Вот VY Большого Пса. Она в миллиард раз больше Солнца. Буквально
Если уменьшить Солнце до размеров белого кровяного тельца и соответственно уменьшить Млечный Путь, то по размерам он будет соответствовать Соединённым Штатам
«Вы здесь» на Млечном Пути
А это вся часть Млечного Пути, которую мы можем видеть
Кроме того, Млечный Путь — относительно небольшая галактика в сравнении с IC 1011, расположенной за 350 млн световых лет от Земли
На одном этом снимке с телескопа Хаббл видны тысячи галактик, в каждой из которых имеются планеты и миллионы звёзд
Это галактика UDF 423 в 10 млрд световых лет от Земли. На этом фото вы заглядываете на миллиарды лет в прошлое
Это лишь крошечная часть ночного неба
А вот земная орбита в сравнении с чёрной дырой
В таком масштабе наша жизнь воспринимается совсем иначе. Это наш дом
Маловат, да?
Прекрасная ночь на местности
Отойдём чуть дальше
Скопление других галактик
Теперь видно всё Сверхскопление Девы
Ещё дальше…
Вот и вся наблюдаемая Вселенная!
Читайте также: 35 научных концепций, которые помогут вам лучше понять мир и себя
Солнце: наша уникальная звезда. — Мировоззрение
Солнце — это раскаленный, яркий шар из плазмы, который господствует в небе в дневное время, являясь самым крупным объектом в Солнечной системе. Солнце обеспечивает Землю теплом и светом, и, как мы далее убедимся, это не обычная звезда.
Происхождение Солнца
Согласно Слову Божьему, Библии, Cолнце не всегда освещало Землю. Солнце не было сотворено до четвертого дня недели сотворения, тогда как Земля была сотворена в первый день творения. Это отвергает такие идеи как «Бог использовал эволюцию» и «Бог творил на протяжении миллиардов лет», поскольку все они утверждают, что Солнце возникло прежде Земли.
В течение первых трех дней бытия Земля освещалась светом, сотворенным в первый день (Книга Бытия 1:3), а дневной/ночной цикл был обусловлен вращением Земли по отношению к этому направленному источнику света. Тогда, согласно Книге Бытия 1:14-19:
«И сказал Бог: да будут светила на тверди небесной для отделения дня от ночи, и для знамений, и времен, и дней, и годов; и да будут они светильниками на тверди небесной, чтобы светить на землю. И стало так. И создал Бог два светила великие: светило большее, для управления днем, и светило меньшее, для управления ночью, и звезды; и поставил их Бог на тверди небесной, чтобы светить на землю, и управлять днем и ночью, и отделять свет от тьмы. И увидел Бог, что это хорошо. И был вечер, и было утро: день четвертый»
И в новом Иерусалиме также не будет нужды в солнечном свете, потому что Бог вновь будет обеспечивать свет (Откровение 21:23). Но, между тем, мы можем оценить чудо-звезду, которую подарил нам Бог.
Почему Солнце уникально?
Атеисты придерживаются мысли, что Солнце является обыкновенной звездой с несложным расположением в спиральной ветви галактики. Действительно, многие звезды превосходят Солнцеразмерами и по степени яркости. Однако утверждать, что более крупные звезды имеют большее значение так же нелогично, как говорить, что мужчина ростом 2 метра важнее женщины ростом 1,5 метра. В результате недавних исследований Солнце было названо «исключительным». Солнце входит в 10% самых больших звезд (по массе) в своем окружении. Фактически, это идеальный размер для поддерживания жизни на Земле. Не было бы никакого смысла в гигантской красной звезде наподобие Бетельгейзе, потому что она такая огромная, что поглотила бы все внутренние планеты!
Нам также вряд ли нужна звезда вроде сине-белой гигантской Ригель, которая в 25000 раз ярче Солнца и испускает слишком высокую степень высокочастотного излучения. Звезда же меньше Солнца будет слишком слабенькой для поддержания жизни на Земле, если только планета не будет находиться слишком близко от звезды, что чревато опасными гравитационными приливами.
Рисунок 1. Земля выглядит на фото вверху слева очень маленькой по сравнению с Солнцем. Массированные огненно-красные лучи (известные как «корональные выбросы»), видимые на фото справа, намного больше Земли (фото НАСА).
Солнце находится в идеальной среде
Солнце — это одиночная звезда, тогда как большинство звезд существуют в кратных системах. Планета в такой системе будет страдать от экстремальных колебаний температуры. Положение Солнца в нашей спиральной галактике Млечный Путь идеально. Его орбита довольно круглая, а это означает, что Солнце не подойдет слишком близко к внутренней части галактики, для которой более характерны сверхновые звезды, необыкновенно сильные вспышки звезд. Уникальная звезда Солнцевращается по орбите почти параллельно галактической плоскости — в противном случае, пересечение этой плоскости было бы разрушительным.
Солнце находится на идеальном расстоянии от центра галактики, на так называемом коротационном радиусе. Лишь здесь скорость орбиты звезды соответствует скорости спиральных ветвей — в противном случае Солнце пересекало бы ветви слишком часто и подвергалось бы действию сверхновых звезд.
Солнце — мощный объект, часто извергающий вспышки, и каждые несколько лет (см. солнечные пятна, Галилей и гелиоцентризм) осуществляющий более сильные выбросы, называемые «корональными выбросами массы» (см. рис. 1). Они создают сильные электрические потоки в верхних слоях атмосферы Земли и разрушают электросети и спутники. В 1989 году такой корональный выброс вывел из строя электросеть в северном Квебеке. Но Солнце оказалось «исключительно стабильной» звездой.
Недавно три астронома занялись изучением одиночных звезд по размерам, степени яркости и структуре аналогичных Солнцу. Почти все из них приблизительно раз в столетие извергаютсверхвспышки, от 100 до 100 миллионов раз сильнее той, которая привела к аварии энергосистемы в Квебеке. Если бы Солнце извергало супервспышки, подобные этим, это разрушило бы озоновый слой Земли с катастрофическими последствиями для жизни.
Как Солнце светит?
В 1939 году Ганс Бете выдвинул гипотезу, что Солнце и другие звезды питаются энергией путемядерного синтеза — эта теория принесла ему Нобелевскую премию в 1967 году в области физики. В процессе синтеза очень быстро движущиеся ядра водорода соединяются, чтобы превратиться в гелий — для этого необходима температура в миллионы градусов. Некоторая масса теряется и превращается в огромное количество энергии, согласно известной формуле Эйнштейна E = mc2.6 Таким образом,Солнце похоже на гигантскую водородную бомбу.
Факты о солнце | |
Среднее расстояние от земли | 149,600,000 км или 92,937,000 миль (1 астрономическая единица (а.е.)) |
Диаметр | 1,392,000 км или
864,950 миль (109 больше диаметра земли) |
Масса | 1.99 x 1030 кг (330000 x земля) |
Средняя плотность | 1.41 г/см3 (1/4 земли) |
Температура | 5,470 °C (9,880 °F) поверхности, 14000000 °C (25000000 °F) ядра |
Выходная мощность | 3.86 x 1026 ватт |
Вторая астрономическая скорость на поверхности | 618 км/сек или 384 миль/сек (в 55 раз больше показателя для земли) |
Период вращения (дни) | 26.9 (экватор), 27.3 (зона солнечных пятен, 16°N), 31.1 (полюс), все синодические |
Если синтез полностью отвечает за огромную выходную мощность Солнца в 3.86 x 1026 ватт, то это означает, что 4 миллиона тонн материи ежесекундно превращается в энергию. Это колоссально, но незначительно по сравнению с огромной общей массой Солнца. То, что синтез отвечает, по меньшей мере, за часть выходной мощности Солнца, поддерживается огромным потоком солнечных нейтрино — частиц, которые обычно могут беспрепятственно проходить сквозь материю толщиной в световые годы.
Однако, если бы ядерный синтез был единственным источником энергии, тогда нейтрино было бы в три раза больше.9 Эта нехватка была экспериментально объяснена тем, что есть три вида нейтрино. Для этого у них должна быть масса, хотя ранее они всегда считались безмассовыми. В качестве альтернативы, две трети солнечной энергии может обеспечиваться путем гравитационного коллапса, через конверсию энергии гравитационного потенциала в тепло и свет, поскольку солнечные газы обрушиваются во внутрь. Эта теория была предложена великим физиком Германом фон Гельмгольцем (1821-1894).
Теория считалась основополагающей до расцвета эпохи дарвинизма, которая не примирилась с установленным верхним пределом возраста Солнца в 22 миллиона лет — слишком короткого для эволюции. Наблюдения, предполагающие, что Солнце сокращается со скоростью примерно 0,02 дуговых секунд в столетие, поддерживают эту идею.10 Этого достаточно, чтобы коллапс был существенным источником энергии. Но сокращение спорно, даже среди креационистов. В любом случае, поскольку ядерный синтез является, по крайней мере, частичным источником энергии, установленный Гельмгольцем предел возраста Солнца не может использоваться неукоснительно.
[Примечание от 30 Мая 2002: статья Филлипа Ф. Шу, Бена Штайна и Джеймса Райордона, опубликованная в бюллетене The American Institute of Physics Bulletin of Physics News 586 24 апреля 2002 года, продемонстрировала убедительные доказательства колебаний нейтрино. Ранее детекторы могли улавливать лишь электронные нейтрино. Но этот новый эксперимент Нейтринной обсерватории в Садбери (SNO) помог определить недостающие виды нейтрино, мю и тау нейтрино, которые подвергаются реакциям «нейтрального тока». Это совпадает с прочими свидетельствами того, что синтез является главным источником энергии, например, стандартные физические модели показывают, что температура ядра довольно высока для синтеза.
Это означает, что в итоге нейтрино должны обладать крошечной массой покоя — экспериментальные данные должны брать верх над теориями физиков, занимающихся изучением частиц, о том, что масса покоя нейтрино равна нулю. Таким образом, креационисты не должны больше ссылаться на проблему недостающих нейтрино с целью отрицания синтеза как основного источника энергии для Солнца. И в данной ситуации это не может указывать ни на «молодость» Солнца, ни на его «старость».
Тем не менее, астроном и исследователь Солнца Джон Эдди заметил: «Я подозреваю… что Солнцу 4,5 миллиарда лет. Однако с появлением некоторых новых и неожиданных данных, свидетельствующих о противном, и в ходе активных перерасчетов и теоретических корректировок, я пришел к мысли, что мы могли бы придерживаться возраста Земли и Солнца, определенного епископом Ашером [около 6000 лет]. Не думаю, что доказательства, обнаруженные обсерваторией, и сделанные епископом расчеты находятся в противоречии».
Проблемы эволюционных теорий Солнца
Эволюционисты считают, что Солнечная система сформировалась из облака пыли и газа 4,5 миллиарда лет назад. У этой небулярной космогонической теории много проблем. Один крупный специалист подытожил: «Облака слишком раскаленные, слишком магнетические, и они слишком быстро вращаются».
Этот важный вопрос может быть продемонстрирован опытными фигуристами, вращающимися на льду. Убрав руки, они вращаются быстрее. Это объясняется тем, что физики называют Законом сохранения углового момента. Угловой момент = масса x скорость x расстояние от центра массы, и всегда остается постоянным в изолированной системе. Когда фигуристы убирают руки, расстояние от центра уменьшается, следовательно, скорость вращения увеличивается, иначе угловой момент движения не оставался бы постоянным.
При формировании Солнца из туманности в космическом пространстве произошел бы тот же эффект, поскольку газы предположительно сжимались к центру, таким образом формируя Солнце. Это привело бы к быстрому вращению Солнца. В действительности, Солнце вращается очень медленно, тогда как планеты вокруг него движутся с неимоверной быстротой. Фактически, хотя основная доля массы Солнечной системы сосредоточена в Солнце — 99%, ему принадлежит всего 2% углового момента. Это прямо противоречит модели, рассчитанной для небулярной теории. Эволюционисты пытались решить эту проблему, но известный исследователь Солнечной системы доктор Стюарт Росс Тейлор заявил в недавно вышедшей книге: «Окончательное происхождение углового момента Солнечной системы остается неясным».
Еще одна проблема небулярной теории — формирование газовых планет. Согласно этой теории, когда газ концентрировался в планеты, молодое Солнце должно было проходить через так называемую фазу Т-Таури. В этой фазе Солнце должно было источать сильный солнечный ветер, гораздо более сильный, чем в настоящее время. Этот солнечный ветер вытеснял бы излишки газа и пыли из все еще формирующейся Солнечной системы, и, следовательно, не оставалось бы достаточного количества легких газов для формирования Юпитера и трех остальных гигантских газовых планет. Это сделало бы эти четыре газовые планеты меньше, чем они есть сегодня.
Солнечные пятна. Галилей и гелиоцентризм
Солнечные пятна похожи на темные заплатки на поверхности Солнца. Можно видеть, как они движутся, а их исследование показывает, что разные части Солнца вращаются с разной скоростью, в отличие от твердых тел. Солнечные пятна сменяют друг друга с периодичностью приблизительно в 11.2 лет. Галилео Галилей (1564-1642) систематически изучал солнечные пятна на протяжении 1611 года и выяснил, что они сводят на нет доминирующую теорию Аристотеля/Птолемея о том, что небесные тела представляют собой «идеальные сферы».
Сегодня понятно, что солнечные пятна — это водовороты газа на поверхности Солнца, и их темный цвет обусловлен тем, что температура пятен на несколько тысяч градусов ниже. Исследование их оптического спектра показывает, что магнитное поле Солнца особенно сильное в солнечных пятнах. Галилей был сторонником теории Николая Коперника (1473-1543) о том, что Земля и другие планеты вращаются вокруг Солнца. Галилей полагал, что гораздо более простая математика системы Коперника по сравнению с громоздкой системой Птолемея лучше всего отразит математическую простоту Бога (т.е. Бог не состоит из частей, он Триедин).
В энциклопедии Britannica главными оппонентом Галилея назван научный истеблишмент: «Профессора-последователи Аристотеля, видя угрозу их привилегированным кругам, объединились против него. Они пытались навлечь на него подозрение в глазах религиозных властей из-за [предполагаемых] противоречий между теорией Коперника и Библией».
Обе стороны должны были понимать, что все движение следовало описывать в привязке к чему-то другому — к системе отсчета — и с описательной точки зрения все системы отсчета одинаково справедливы. В Библии Земля использовалась как удобная система отсчета, как делают современные астрономы, говоря о «закате/восходе Солнца»; знаки для ограничения скорости также зависят от Земли как от системы отсчета. Использование Солнца (или центра массы Солнечной системы) наиболее удобно для обсуждения движения планет.
Затмение!
11 августа 1999 года многим людям, от Англии до Индии, посчастливилось наблюдать захватывающее зрелище полного затмения Солнца. Такое возможно вследствие того, что Луна почти той же угловой протяженности (полградуса) в небе, что и Солнце — она в 400 раз меньше и в 400 раз ближе, чем Солнце. Все это похоже на Разумный Замысел. Луна постепенно удаляется от Земли на 4 см (1,5 дюйма) в год. Если бы это действительно происходило в течение миллиардов лет, а человечество существовало лишь мизерную часть этого временного промежутка, то шансы на то, что человечество существовало бы именно в тот промежуток, когда можно наблюдать это явление, были бы весьма незначительными. (Фактически, такое удаление устанавливает крайний предел возраста системы Земля/Луна, значительно ниже предполагаемых 4,5 миллиардов лет).
Во время полного затмения внешняя атмосфера Солнца, корона, становится видна. Она образована наиболее разреженным ионизированным чрезвычайно раскаленным газом. При температуре 2 миллиона °C (3,6 миллиона °F), она приблизительно в 350 раз раскаленнее поверхности Солнца. Это загадочное явление, потому что тепло обычно идет от нагретых объектов к холодным. Многообещающая теория основывается на сильном магнитном поле Солнца — пересоединение линий магнитной индукции могло бы поставлять изрядное количество энергии внутрь короны. Эту теорию можно применять в области исследований термоядерной энергии.
(Примечание от 15 Ноября 2000: недавно сделанные фотографии показывают, что корональные петли образованы рядом более тонких петель и что они сильно раскалены у основания. Новая модель состоит из газа, преимущественно из ионизированного железа, который движется вверх на 400 000 км со скоростью 100 км/сек и затем остывает, разрушаясь на поверхности)
Джонатан Сарфати
Реальное вращение Земли и системы Сириуса.: archi_fact — LiveJournal
? LiveJournal- Main
- Top
- Interesting
- 235 ideas
- Your 2020 in LJ
- Disable ads
- Login
- English
(en)
- English (en)
- Русский (ru)
- Українська (uk)
- Français (fr)
- Português (pt)
- español (es)
- Deutsch (de)
- Italiano (it)
- Беларуская (be)
«Солнце,Земля и другие планеты» | План-конспект занятия по окружающему миру (подготовительная группа) на тему:
Муниципальное автономное дошкольное образовательное учреждение №7 «Гвоздика» города Дубны Московской области.
Комплексная непосредственно-образовательная деятельность
«Солнце, Земля и другие планеты»
(подготовительная группа).
Составила и провела
воспитатель:
Красильникова А. П.
10 ноября 2014 г.
Комплексная непосредственно-образовательная деятельность
«Солнце, Земля и другие планеты».
Программное содержание:
- познакомить детей с планетой Земля, ее спутником — Луна, другими планетами и с их взаиморасположением в Солнечной системы;
- сформировать представления о смене дня и ночи;
- воспитывать желание обогащать свой кругозор и любовь к планете Земля.
Материал: карта или графическая модель Солнечной системы, глобус, настольная лампа, два пластилиновых человечка.
Ход НОД:
1 часть:
— Дети, послушайте, пожалуйста, загадку:
Мы все обязаны ему –
Оно дарует жизнь всему!
На букву «С» оно зовется,
Вы догадались, это … (Солнце)
-Дети, что такое солнце?
(Это раскаленный газовый шар).
-Правильно! Температура на поверхности солнца – 6000 градусов, а внутри солнца – 15 млн. градусов. Еще солнце – это большая, большая, просто огромная звезда, которая находится далеко от нас. Что нам дает солнце? (Солнце нам дает тепло, свет и жизнь).
— А что было бы, если бы не было солнца? (Если бы не было солнца, то на земле всегда была бы ночь. Не росли бы деревья, растения, потому что они не могут расти без света. Жили бы только те животные, птицы и насекомые, которые живут без света. Человек бы строил закрытые города, где было бы только искусственное освещение. Без солнца было бы всем плохо).
-Где мы можем увидеть солнце? И в какую часть суток мы можем видеть его? (Солнце мы видим на небе в дневное время суток).
— А где же солнце бывает ночью? (Ночью солнце светит на другой стороне планеты).
-Дети, а как называется планета, на которой мы с вами живем? (Планета Земля).
-Послушайте стихотворение.
В темном небе звезды светят,
Космонавт летит в ракете,
День летит и ночь летит
И на землю вниз глядит
— Вот наша планета Земля – это огромный – преогромный шар. Для того чтобы представить себе не только форму, но и поверхность Земли ученые изобрели модель нашей планеты – это глобус. Если внимательно посмотреть на него, то мы видим, что преобладают какие цвета? (голубой, коричневый). Значит, наша планета из космоса выглядит, как голубой шар.
2 часть:
-Ребята, задумывались ли вы, почему день сменяется ночью, а потом приходит день? (Ответы детей). Наша планета находиться в постоянном движении, вращается вокруг своей оси и вокруг Солнца, в результате чего на Земле сменяются части суток и времена года.
Проведем опыт:
Материалы: настольная лампа, глобус с прикрепленной к нему бабочкой, 2 пластилиновых человечка.
Зажигаем настольную лампу – это солнце. Солнце свети на бабочку – это день. Вращаем глобус (бабочка напротив лампы) вокруг своей оси. Видим, что бабочка удаляется от «Солнца» и менее становится освещенной, а затем вообще исчезает и находиться на противоположной стороне от Солнца – значит у нас теперь – ночь.
Как же происходит смена дня и ночи, почему то светло, то темно?
Ставит пластилиновую фигурку на глобус (там, где находится Москва) и начинает медленно его вращать, а детям предлагает наблюдать за человечком и сообщать, когда наступает в его городе день, а когда ночь.
— Что надо делать человечку – ложиться спать или вставать?
-Давайте поставим человечка в другое место (например, на Африку) – может быть, там не происходит смены дня и ночи?
Воспитатель показывает Россию и Соединенные Штаты Америки.
Когда в России день, то в США – ночь, и наоборот. Ставит одного человечка в России – это Ваня, а другого в США – это Джон. Понаблюдаем за вращением глобуса.
Что делают мальчики?
Вывод: Везде, на Земле день сменяется ночью. Это происходит потому что, планета Земля вращается вокруг себя и поворачивается к Солнцу то одной, то другой стороной. На стороне, освещённой Солнцем, наступает день, а в это же время на другой стороне планеты наступает ночь.
Но, кроме того, что Солнце вращается вокруг своей оси, оно и вращается и вокруг солнца. Полный круг проходит Земля вокруг солнца за 365 дней, а это целый год. В момент вращения земли вокруг солнца и происходит смена времен года (зима, весна, лето, осень). Посмотрим это на нашем опыте.
Физкультминутка.
Мы цепочкой друг за другом, взявшись за руки идем.
(Идут цепочкой, взявшись за руки, правое плечо вперед).
Повернувшись внутрь круга, медленно кольцо замкнем, вот колечко, то есть круг,
(Останавливаются, образуют круг, взявшись за руки/).
Наши руки, приподнявшись,
(Прямые руки поднимают вверх).
Лучиками стали вдруг.
(Потянуться вверх на носочках).
Мы сомкнулись, повернулись
(Руки опустить, шаг вперед, поворот кругом).
Раз! И солнцем обернулись.
(Руки вверх — потянуться на носочках).
Чтоб нас лучше разглядели, раз – присели, два – присели.
(Руки вперед, приседают два раза).
Вдаль сейчас ракета мчится, прямо к звездной тишине,
(Прямые руки поднимают вверх, соединяя ладони рук над головой, потянуться на носочках).
И звездою обратившись,
(Прямые руки над головой — растопырить пальцы рук)
Ярко светит в темноте.
(Выполняют движения «фонарики» кистями рук).
Можем сделать мы флажок,
(Попеременные движения прямыми руками вверх – вниз перед собой).
Можем – треугольник.
(Соединить ладони треугольником перед собой).
Это все легко и просто – сделать может школьник.
(Махнуть правой рукой перед собой)
3 часть:
— Послушайте загадку:
Блин в окошке виден Тане.
То он в масле, то в сметане
Кто-то край уже отъел
Поделиться не хотел. (Луна)
-Луна – это естественный спутник Земли, который вертится вокруг своей сестры Земли. (Демонстрация вращения Луны вокруг Земли).
-Дети, почему Луну называют «спутником Земли».
Что означает слово «спутник»? Земля притягивает к себе Луну, не дает ей удалиться. Как это продемонстрировали на примере с шаром на резинке.
На Луне нет атмосферы (воздуха) и нет воды, следовательно, там жизнь невозможна. Луна по размерам меньше Земли и намного меньше Солнца, но не только меньше, но и значительно легче. Например: на Земле прыгнув на 1 метр, на Луне – прыгните на 6 метров; на Земле вы можете поднять груз весом 10 килограммов, на Луне вы можете поднять груз весом 60 килограммов, ваш вес на Луне будет всего лишь 4 килограмма, вместо 20 – 24 килограммов. Поэтому Луна притягивает к себе находящиеся предметы слабее, чем Земля.
Незащищена она от космических камушков, до Земли они не долетают, сгорая в космосе, а до Луны долетают и могут принести вред здоровью находившимся там космонавтам.
Демонстрация макета поверхности Луны. Поверхность Луны покрыта мельчайшим песком, лунной пылью. Предлагают детям сделать пальцем несколько углублений – следы человека и кинуть камешки на песок. Что было бы, если на Луне был ветер? Для ответа предлагается детям провести опыт: подуть на песок через трубочку. Следы исчезают. Но на Луне нет воздуха, а значит, нет ветра. Поэтому следы космонавтов останутся здесь навсегда.
-Дети, а когда можно наблюдать на небе Луну? ( Ночью).
-Какой формы вы видели Луну? (ответы детей)
— Правильно, она бывает разной. Луна – сама не излучает собственного света, т. е. не светится сама, а только отражает свет Солнца. Вот и получается в результате того, что, вращаясь вокруг Солнца, Земля по-разному затеняет Луну. Луна в зависимости от этого отражает различное количество света. Когда на небе полная Луна, тогда говорят: наступило полнолуние; вообще не видно – новолуние; в зависимости, куда повернуты рожки месяца, говорят Луна стареющая или растущая. Чтобы запомнить, нужно посмотреть на Луну, если в форме буквы «С», то стареющая. Если «Р», то растущая. От появления серпика растущей Луны до следующего всегда проходит 30 дней, т. е. почти месяц. Вот поэтому серпик растущей молодой Луны называют «месяцем».
Даю вам такое задание: Когда сегодня вы пойдете домой из детского сада, а на улице уже будет темно, обратите внимание, какая будет Луна?
4 часть:
Вот уже дорогой света
Прилетели мы –
К планетам Солнечной системы
Да, кроме того, что мы с вами увидели — это Солнце, Землю и Луну, вокруг Солнца вращаются и другие планеты. Их всего 9. Солнце с планетами (их спутниками и кометами) представляет собой большую семью, которая называется Солнечная система. Давайте все вместе скажем Солнечная система. Поэтому космический адрес наш таков: Солнечная система – планета Земля – страна Россия – город Дубна. У Солнца 9 планет. Ближе всех к Солнцу, на Первой кольцевой улице, находиться Меркурий, Одна сторона Меркурия всегда освещена солнцем, а на другой вечная ночь. Здесь очень-очень жарко. Меркурий твердый и каменистый. (Демонстрация иллюстрации). Жизни на этой планете нет.
На Второй улице — Венера — самая яркая из всех видимых планет с Земли. Венера окутана ядовитыми облаками. На этой планете постоянно сверкают молнии и гремят грозы и идут дожди, которые все прожигают насквозь. Там очень жарко. Жизни там нет.
на третьей – Земля, имеющая голубой цвет,
на Четвертой – Марс. Марс легко отличить по цвету, он похож на огонь, на пламя. Марс – это планета, покрытая ярко оранжевым песком.
Дальше от солнца находятся Юпитер, Сатурн, Уран и Нептун – это большие планеты.
Самая большая из них – Юпитер. Юпитер окружен облаками, ракета не может сесть на эту планету, так как сразу же провалиться.
Сатурн — вторая по величине после Юпитера. Он окружен великолепными кольцами.
Уран — имеет зеленый цвет из-за присутствия в атмосфере газа – метан.
и Нептун,
А маленький Плутон, состоящий из камней и льда, живет на самой последней Девятой улице – поэтому и тепла ему достается меньше всего. Это самая маленькая и холодная планета, так как, солнечные лучи не достигают ее.
Познакомились с большой солнечной семьей, а теперь поиграем в игру «Угадай планету». Я вам буду описывать планеты, а вы попробуете их отгадать и показать.
Эта планета ближе всех к солнцу. На этой планете такая жара, что там оказаться опасно друзья. Одна сторона освещена солнцем, а на другой вечная ночь. Что это за планета? (Меркурий)
А это планета ярко оранжевого цвета. Похожа на огонь, на пламя. Что за планета это? (Марс).
На этой планете постоянно сверкают молнии и гремят грозы. Она окружена ядовитыми облаками? (Венера).
Планета кольцами окружена, и этим от всех отличается она? (Сатурн).
Это самая маленькая планета, дальше всех от солнца. Эту планету холод страшный сковал, теплом ее солнечный луч не достал? (Плутон).
А эта планета гордится собой, поскольку считается самой большой? (Юпитер).
Давайте представим, что Солнце, как мама – курица, а цыплята — планеты Солнечной системы, которые кружат вокруг своей мамы, и всех она любит, согревает. Подойдите к макету Солнечной системы (обруч с 9 веревочками разной длины, на концы которых привязаны шапочки с планетами). Самый быстрый сыночек – Меркурий, самая красивая доченька – Венера, а самая добрая – Земля. Самый драчливый сынок – Марс. Самого большого и толстого зовут – Юпитер. Уран и Нептун отличаются силой и спокойным характером. Сатурн считается весельчаком, и только маленький Плутон всегда плаксивый и мрачный. Демонстрация движения планет.
Итог:
-Вы сегодня хорошо поработали, и космонавты, которые наблюдали за нами с космоса дарят вам визиточки с вашим космическим адресом: солнечная система – планета Земля – страна Россия – город Дубна, которые не дадут вам потеряться в этом огромном пространстве.
Расстояние до Солнца — Мифы и Реальность / Интересное / Статьи / Еще / Обо всем
Мы взрываемся в космосе
Как многие мифы, которым верят, эта идея была практически создана с нуля Голливудом. Зачастую кинематографисты не шибко беспокоятся о подлинности фактов. Они с готовностью представят реальность в любом нужном свете, лишь бы снять сцену поинтереснее. Из кино мы знаем, что, стоит человеку появиться в открытом космосе без защитного костюма, он покойник: спустя мгновение он, скорее всего, взорвется и превратится в фонтан из крови и кишок (в зависимости от возрастного ограничения фильма).
Выход в открытый космос без должной экипировки определенно вас убьет, но не мгновенно и не выворачивая наизнанку. Человек может прожить в открытом космосе примерно минуту. Это не очень приятно, но, с другой стороны, это и не мгновенная смерть. Скорее всего, вы умрете от удушья из-за недостатка кислорода. Кино, которое показывает это корректно, — «Космическая одиссея 2001» Стэнли Кубрика.
Венера и Земля идентичны
Венеру часто называют нашим близнецом, но это не значит, будто она такая же как Земля. Эта идея появилась, когда у нас не было представления о том, как именно выглядит поверхность планеты. Из-за ее невероятно плотной атмосферы мы не могли этого понять до того, как отправили туда летательный аппарат, который обнаружил, насколько на самом деле недружелюбна и бесплодна поверхность Венеры.
Солнце — это огненный шар
Вообще-то Солнце светится, а не горит. Среднестатистический человек не увидит в этом сколь бы то ни было значимой разницей, но жар, выделяемый Солнцем, — результат ядерной реакции, а не химической (а горение — химическая реакция).
Солнце желтого цвета
Попросите кого угодно нарисовать Солнце — и он немедленно возьмется за желтый карандаш. Это считается нормальным. Мы рисовали Солнце желтым карандашом с самого детства, когда все, что мы могли нарисовать, — несчастный домик и улыбающееся солнышко в углу листа. Если нам потребуются дополнительные доказательства — что ж, мы можем выйти на улицу, посмотреть на Солнце и убедиться в том, что оно желтое.
Тем не менее Солнце мы видим желтым только благодаря нашей атмосфере. Если же вы убеждены, что вы видели фотографии Солнца, сделанные NASA, и Солнце на них было желтым — что ж, может быть, вы и правы. Наше представление о Солнце желтого цвета так распространено, что иногда астрономы редактируют цвета фотографий так, чтобы оно на них было узнаваемым.
Как бы то ни было, настоящий цвет Солнца — белый. Если вы когда-нибудь встретите астронавта или кого-нибудь, кто был в космосе, спросите у него об этом непременно.
Несмотря на это, нам необязательно видеть Солнце, чтобы сказать, какого оно цвета: мы можем это выяснить по температуре. Холодные звезды — коричневого/тнмно-красного цвета, их цвет становится насыщенней по мере того, как они нагреваются. Температура красной звезды — несколько тысяч градусов Кельвина. На другом конце спектра — самые горячие звезды, их температура — порядка десяти тысяч кельвинов, а цвет — синий. Температура Солнца — порядка шести тысяч кельвинов, — где-то посередине спектра, что и делает его белым.
Земля ближе к солнцу летом
На первый взгляд это утверждение кажется довольно логичным. Наша планета максимально нагревается, когда она ближе всего к источнику тепла. Как бы то ни было, эта идея появилась из-за недопонимания того, что такое смена сезонов. Это не расположение относительно Солнца, это наклон нашей орбитальной оси. Ось, вокруг которой вращается наша планета, накренена в одну сторону. Когда эта ось наклонена в сторону Солнца, в том полушарии, которое как бы указывает на Солнце, лето. Когда оно «смотрит» в другую сторону, в нем зима.
Но то, что Земля иногда ближе, а иногда дальше к Солнцу, — не миф. Наша планета движется по орбите, имеющей форму эллипса (как и большая часть других планет). Расстояние от Земли до Солнца — приблизительно 150 миллионов километров. Несмотря на это, в перигелии (перигелий — ближайшая к Солнцу точка на Земле) это расстояние сокращается до 147 миллионов километров, а в апелии (самое большое расстояние) увеличивается до 152 миллионов. Так что во время годового цикла расстояние между Землей и Солнцем меняется примерно на пять миллионов километров.
У Луны есть темная сторона
Мысль о том, что у Луны есть сторона, постоянно пребывающая в сумраке, неправильна. Луна синхронно вращается с Землей, а это значит, что одна и та же сторона обращена в нашу сторону, а не в сторону Солнца. Все стороны Луны постоянно получают солнечный свет в различных точках.
Звук в космосе
В кино изредка случается услышать звук в космосе. Думаю, если вам выпал шанс снять взрыв или драматическую смерть, вы непременно захотите, чтобы аудитория это услышала. Но в космосе нет атмосферы, а значит, нет ничего, через что могли бы проходить звуковые волны. И опять же, Кубрик все правильно показал в «Космической одиссее».
Это отнюдь не значит, что нигде во Вселенной нет звуков, как только на нашей планете. Если вы попадете в место, где есть атмосфера, там будет звук, но, вероятно, несколько странный. На Марсе, например, звук будет выше.
Вы не можете пролететь через пояс астероидов
Об этом мы все узнали из «Звездных войн». Хан Соло продемонстрировал, что он крутой пилот, когда направил «Тысячелетнего сокола» через смертоносный пояс астероидов и вынырнул с другой стороны вопреки почти что нулевым шансам на выживание. Впечатляет — если не принимать во внимание тот факт, что вы, вероятно, сможете это повторить, если у вас есть удобный космический корабль.
Одна из тех деталей, в которых кинематографисты обычно путаются, когда речь заходит о космосе, — точная передача размеров. Это не их вина: если бы они показывали все в истинном размере, мы бы просто смотрели на черный экран с маленькими точками здесь и там (планеты или другие космические объекты). Космос — очень, очень, очень большой. Даже если пояс астероидов состоит из многих миллионов астероидов, вам нужно быть самым большим неудачником во Вселенной, чтобы задеть один из них. Это не невозможно, но шансы минимальны.
Возьмем, к примеру, наш собственный пояс астероидов в качестве примера. В нем содержатся миллионы объектов. Самый крупный — Церера, бывший астероид, нынче переклассифицированный в карликовую планету. Она имеет порядка 950 километров в диаметре. Расстояние между двумя объектами в поясе астероидов — от сотен до тысяч километров. Шанс задеть один из них — 1:1000000000. Мы уже отправили 11 зондов через пояс астероидов — как вы, возможно, знаете, без аварий.
Великая Китайская стена видна из космоса
Ответ — нет. Об этом «факте» в интернете прочитали уже, кажется, все. Странно, что он все еще числится среди достоверных фактов.
NASA получает почти четверть государственного бюджета
Несомненно, США больше, чем кто-либо еще, потратили на исследование космического пространства, но, к сожалению, эти траты были относительно незначительными в последние годы, поскольку NASA понемногу теряет общественную поддержку. Все больше людей все меньше интересуются космосом, и это, конечно же, кошмар, поскольку освоение космоса — одно из самых амбициозных и важных предприятий в истории человечества.
Одна из самых важных проблем, которые есть у NASA, — мнение общественности, согласно которому организация тратит слишком много денег. Люди переоценивают размеры финансирования, которое NASA получает ежегодно. Опросы регулярно показывают, что среднестатистический житель США считает, будто ведомство получает значительный кусок федерального бюджета, подчас 25%. А поскольку многим сейчас приходится бороться за выживание (в экономическом смысле), космическая программа — явно не то, что их интересует.
Но дело в том, что NASA даже близко не получает таких денег. Вот детальная выкладка бюджета на 2015 год, в ней видно, что сумма, которую получит организация, составляет около 0,5%. По сути, на протяжении почти всего времени существования NASA их бюджет всегда был в пределах одного процента. Больше всего они получали во время космической гонки в 60-е годы прошлого века (4,4%). И никогда — 25%, о которых некоторые так любят упомянуть.
Если добрались ДАЖЕ СЮДА — тогда извольте получить лекцию по геометрии. Геометрии Звёздного Неба.
Небо над головой — самый древний учебник геометрии. Первые понятия, такие как точка и круг, — оттуда. Скорее даже не учебник, а задачник. В котором отсутствует страничка с ответами. Два круга одинакового размера — Солнце и Луна — движутся по небу, каждый со своей скоростью. Остальные объекты — светящиеся точки — движутся все вместе, словно они прикреплены к сфере, вращающейся со скоростью 1 оборот в 24 часа. Правда, среди них есть исключения — 5 точек движутся как им вздумается. Для них подобрали особое слово — «планета», по-гречески — «бродяга». Сколько человечество существует, оно пытается разгадать законы этого вечного движения. Первый прорыв произошел в III веке до н.э., когда греческие ученые, взяв на вооружение молодую науку — геометрию, смогли получить первые результаты об устройстве Вселенной. Об этом и пойдет речь.
Чтобы иметь некоторое представление о сложности задачи, рассмотрим такой пример. Представим себе светящийся шар диаметром 10 см, неподвижно висящий в пространстве. Назовем его S. Вокруг него на расстоянии чуть больше 10 метров обращается маленький шарик Z диаметром 1 миллиметр, а вокруг Z на расстоянии 6 см обращается совсем крохотный шарик L, его диаметр — четверть миллиметра. На поверхности среднего шарика Z живут микроскопические существа. Они обладают неким разумом, но покидать пределы своего шарика не могут. Всё, что они могут, — смотреть на два других шара — S и L. Спрашивается, могут ли они узнать диаметры этих шаров и измерить расстояния до них? Сколько ни думай, дело, казалось бы, безнадежное. Мы нарисовали сильно уменьшенную модель Солнечной системы (S — Солнце, Z — Земля, L — Луна).
Вот такая задача стояла перед древними астрономами. И они ее решили! Более 22 веков назад, не пользуясь ничем, кроме самой элементарной геометрии — на уровне 8 класса (свойства прямой и окружности, подобные треугольники и теорема Пифагора). И, конечно, наблюдая за Луной и за Солнцем.
Над решением трудились несколько ученых. Мы выделим двух. Это математик Эратосфен, измеривший радиус земного шара, и астроном Аристарх, вычисливший размеры Луны, Солнца и расстояния до них. Как они это сделали?
Как измерили земной шар
То, что Земля не плоская, люди знали давно. Древние мореплаватели наблюдали, как постепенно меняется картина звездного неба: становятся видны новые созвездия, а другие, напротив, заходят за горизонт. Уплывающие вдаль корабли «уходят под воду», последними скрываются из вида верхушки их мачт. Кто первый высказал идею о шарообразности Земли, неизвестно. Скорее всего — пифагорейцы, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств того, что Земля — шар. Главное из них: во время лунного затмения на поверхности Луны отчетливо видна тень от Земли, и эта тень круглая! С тех пор постоянно предпринимались попытки измерить радиус земного шара. Два простых способа изложены в упражнениях 1 и 2. Измерения, правда, получались неточными. Аристотель, например, ошибся более чем в полтора раза. Считается, что первым, кому удалось сделать это с высокой точностью, был греческий математик Эратосфен Киренский (276–194 до н. э.). Его имя теперь всем известно благодаря решету Эратосфена — способу находить простые числа (рис. 1).
Если вычеркнуть из натурального ряда единицу, затем вычеркивать все четные числа, кроме первого (самого числа 2), затем все числа, кратные трем, кроме первого из них (числа 3), и т. д., то в результате останутся одни простые числа. Среди современников Эратосфен был знаменит как крупнейший ученый-энциклопедист, занимавшийся не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку — центр мировой науки того времени. Работая над составлением первого атласа Земли (речь, конечно, шла об известной к тому времени ее части), он задумал провести точное измерение земного шара. Идея была такова. В Александрии все знали, что на юге, в городе Сиена (современный Асуан), один день в году, в полдень, Солнце достигает зенита. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня — день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час»), т. е. в полдень по солнечным часам, Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник ABC (АС — шест, АВ — тень, рис. 2).
Итак, солнечный луч в Сиене (N) перпендикулярен поверхности Земли, а значит, проходит через ее центр — точку Z. Параллельный ему луч в Александрии (А) составляет угол γ = ACB с вертикалью. Пользуясь равенством накрест лежащих углов при параллельных, заключаем, что AZN = γ. Если обозначить через l длину окружности, а через х длину ее дуги AN, то получаем пропорцию . Угол γ в треугольнике АВС Эратосфен измерил, получилось 7,2°. Величина х — не что иное, как длина пути от Александрии до Сиены, примерно 800 км. Ее Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов, регулярно ходивших между двумя городами, а также используя данные бематистов — людей специальной профессии, измерявших расстояния шагами. Теперь осталось решить пропорцию , получив длину окружности (т. е. длину земного меридиана) l = 40000 км. Тогда радиус Земли R равен l/(2π), это примерно 6400 км. То, что длина земного меридиана выражается столь круглым числом в 40000 км, не удивительно, если вспомнить, что единица длины в 1 метр и была введена (во Франции в конце XVIII века) как одна сорокамиллионная часть окружности Земли (по определению!). Эратосфен, конечно, использовал другую единицу измерения — стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен — неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Эратосфен рассуждал так: если города находятся на одном меридиане (т. е. Александрия расположена в точности к северу от Сиены), то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы должны получить правильный результат. Но на самом деле Александрия и Сиена — далеко не на одном меридиане. Сейчас в этом легко убедиться, взглянув на карту, но у Эратосфена такой возможности не было, он как раз и работал над составлением первых карт. Поэтому его метод (абсолютно верный!) привел к ошибке в определении радиуса Земли. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибся менее чем на 2%. Улучшить этот результат человечество смогло только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа ученых во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности в 37000 км. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придется преодолевать. Они-то считали, что длина экватора на 3 тысячи км меньше, чем на самом деле. Знали бы — может, и не поплыли бы.
В чем причина столь высокой точности метода Эратосфена (конечно, если он пользовался нужным стадием)? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, т. е. не более 100 км. Таковы, например, способы в упражнениях 1 и 2. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т. д. Чтобы добиться большей точности, нужно проводить измерения глобально, на расстояниях, сравнимых с радиусом Земли. Расстояние в 800 км между Александрией и Сиеной оказалось вполне достаточным.
Упражнения
1. Как вычислить радиус Земли по следующим данным: с горы высотой 500 м просматриваются окрестности на расстоянии 80 км?
2. Как вычислить радиус Земли по следующим данным: корабль высотой 20 м, отплыв от берега на 16 км, полностью исчезает из вида?
3. Два друга — один в Москве, другой — в Туле, берут по метровому шесту и ставят их вертикально. В момент, в течение дня, когда тень от шеста достигает наименьшей длины, каждый из них измеряет длину тени. В Москве получилось а см, а в Туле — b см. Выразите радиус Земли через а и b. Города расположены на одном меридиане на расстоянии 185 км.
Как видно из упражнения 3, опыт Эратосфена можно проделать и в наших широтах, где Солнце никогда не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, и при этом сделать измерения в этих городах одновременно (сейчас для этого есть технические возможности), то мы получим верный ответ, при этом будет не важно, на каком меридиане находится Сиена (почему?).
Как измерили Луну и Солнце. Три шага Аристарха
Греческий остров Самос в Эгейском море — теперь глухая провинция. Сорок километров в длину, восемь — в ширину. На этом крохотном острове в разное время родились три величайших гения — математик Пифагор, философ Эпикур и астроном Аристарх. Про жизнь Аристарха Самосского известно мало. Даты жизни приблизительны: родился около 310 до н.э., умер около 230 до н.э. Как он выглядел, мы не знаем, ни одного изображения не сохранилось (современный памятник Аристарху в греческом городе Салоники — лишь фантазия скульптора) . Много лет провел в Александрии, где работал в библиотеке и в обсерватории. Главное его достижение — книга «О величинах и расстояниях Солнца и Луны», — по единодушному мнению историков, является настоящим научным подвигом. В ней он вычисляет радиус Солнца, радиус Луны и расстояния от Земли до Луны и до Солнца. Сделал он это в одиночку, пользуясь очень простой геометрией и всем известными результатами наблюдений за Солнцем и Луной. На этом Аристарх не останавливается, он делает несколько важнейших выводов о строении Вселенной, которые намного опередили свое время. Не случайно его назвали впоследствии «Коперником античности».
Вычисление Аристарха можно условно разбить на три шага. Каждый шаг сводится к простой геометрической задаче. Первые два шага совсем элементарны, третий — чуть посложнее. В геометрических построениях мы будем обозначать через Z, S и Lцентры Земли, Солнца и Луны соответственно, а через R, Rs и Rl — их радиусы. Все небесные тела будем считать шарами, а их орбиты — окружностями, как и считал сам Аристарх (хотя, как мы теперь знаем, это не совсем так). Мы начинаем с первого шага, и для этого немного понаблюдаем за Луной.
Шаг 1. Во сколько раз Солнце дальше, чем Луна?
Как известно, Луна светит отраженным солнечным светом. Если взять шар и посветить на него со стороны большим прожектором, то в любом положении освещенной окажется ровно половина поверхности шара. Граница освещенной полусферы — окружность, лежащая в плоскости, перпендикулярной лучам света. Таким образом, Солнце всегда освещает ровно половину поверхности Луны. Видимая нам форма Луны зависит от того, как расположена эта освещенная половина. При новолунии, когда Луна вовсе не видна на небе, Солнце освещает ее обратную сторону. Затем освещенная полусфера постепенно поворачивается в сторону Земли. Мы начинаем видеть тонкий серп, затем — месяц («растущая Луна»), далее — полукруг (эта фаза Луны называется «квадратурой»). Затем день ото дня (вернее, ночь от ночи) полукруг дорастает до полной Луны. Потом начинается обратный процесс: освещенная полусфера от нас отворачивается. Луна «стареет», постепенно превращаясь в месяц, повернутый к нам левой стороной, подобно букве «С», и, наконец, в ночь новолуния исчезает. Период от одного новолуния до другого длится примерно четыре недели. За это время Луна совершает полный оборот вокруг Земли. От новолуния до половины Луны проходит четверть периода, отсюда и название «квадратура».
Замечательная догадка Аристарха состояла в том, что при квадратуре солнечные лучи, освещающие половину Луны, перпендикулярны прямой, соединяющей Луну с Землей. Таким образом, в треугольнике ZLS угол при вершине L — прямой (рис. 3). Если теперь измерить угол LZS, обозначим его через α, то получим, что = cos α. Для простоты мы считаем, что наблюдатель находится в центре Земли. Это несильно повлияет на результат, поскольку расстояния от Земли до Луны и до Солнца значительно превосходят радиус Земли. Итак, измерив угол α между лучами ZL и ZSво время квадратуры, Аристарх вычисляет отношение расстояний до Луны и до Солнца. Как одновременно застать Солнце и Луну на небосводе? Это можно сделать ранним утром. Сложность возникает по другому, неожиданному, поводу. Во времена Аристарха не было косинусов. Первые понятия тригонометрии появятся позже, в работах Аполлония и Архимеда. Но Аристарх знал, что такое подобные треугольники, и этого было достаточно. Начертив маленький прямоугольный треугольник Z’L’S’ с тем же острым углом α = L’Z’S’ и измерив его стороны, находим, что , и это отношение примерно равно 1/400.
Получается, что Солнце в 400 раз дальше от Земли, чем Луна. Эту константу — отношение расстояний от Земли до Солнца и от Земли до Луны — мы будем обозначать буквой κ. Итак, мы нашли, что κ = 400.
Шаг 2. Во сколько раз Солнце больше Луны?
Для того чтобы найти отношение радиусов Солнца и Луны, Аристарх привлекает солнечные затмения (рис. 4). Они происходят, когда Луна загораживает Солнце. При частичном, или, как говорят астрономы, частном, затмении Луна лишь проходит по диску Солнца, не закрывая его полностью. Порой такое затмение даже нельзя разглядеть невооруженным глазом, Солнце светит как в обычный день. Лишь сквозь сильное затемнение, например, закопченное стекло, видно, как часть солнечного диска закрыта черным кругом. Гораздо реже происходит полное затмение, когда Луна на несколько минут полностью закрывает солнечный диск.
В это время становится темно, на небе появляются звезды. Затмения наводили ужас на древних людей, считались предвестниками трагедий. Солнечное затмение наблюдается по-разному в разных частях Земли. Во время полного затмения на поверхности Земли возникает тень от Луны — круг, диаметр которого не превосходит 270 км. Лишь в тех районах земного шара, по которым проходит эта тень, можно наблюдать полное затмение. Поэтому в одном и том же месте полное затмение происходит крайне редко — в среднем раз в 200–300 лет. Аристарху повезло — он смог наблюдать полное солнечное затмение собственными глазами. На безоблачном небе Солнце постепенно начало тускнеть и уменьшаться в размерах, установились сумерки. На несколько мгновений Солнце исчезло. Потом проглянул первый луч света, солнечный диск стал расти, и вскоре Солнце засветило в полную силу. Почему затмение длится столь короткое время? Аристарх отвечает: причина в том, что Луна имеет те же видимые размеры на небе, что и Солнце. Что это значит? Проведем плоскость через центры Земли, Солнца и Луны. Получившееся сечение изображено на рисунке 5a. Угол между касательными, проведенными из точки Z к окружности Луны, называется угловым размером Луны, или ее угловым диаметром. Так же определяется угловой размер Солнца. Если угловые диаметры Солнца и Луны совпадают, то они имеют одинаковые видимые размеры на небе, а при затмении Луна действительно полностью загораживает Солнце (рис. 5б), но лишь на мгновение, когда совпадут лучи ZL и ZS. На фотографии полного солнечного затмения (см. рис. 4) ясно видно равенство размеров.
Вывод Аристарха оказался поразительно точен! В реальности средние угловые диаметры Солнца и Луны отличаются всего на 1,5%. Мы вынуждены говорить о средних диаметрах, поскольку они меняются в течение года, так как планеты движутся не по окружностям, а по эллипсам.
Соединив центр Земли Z с центрами Солнца S и Луны L, а также с точками касания Р и Q, получим два прямоугольных треугольника ZSP и ZLQ (см. рис. 5a). Они подобны, поскольку у них есть пара равных острых углов β/2. Следовательно, . Таким образом, отношение радиусов Солнца и Луны равно отношению расстояний от их центров до центра Земли. Итак, Rs/Rl = κ = 400. Несмотря на то, что их видимые размеры равны, Солнце оказалось больше Луны в 400 раз!
Равенство угловых размеров Луны и Солнца — счастливое совпадение. Оно не вытекает из законов механики. У многих планет Солнечной системы есть спутники: у Марса их два, у Юпитера — четыре (и еще несколько десятков мелких), и все они имеют разные угловые размеры, не совпадающие с солнечным.
Теперь мы приступаем к решающему и самому сложному шагу.
Шаг 3. Вычисление размеров Солнца и Луны и расстояний до них
Итак, нам известно отношение размеров Солнца и Луны и отношение их расстояний до Земли. Эта информация относительна: она восстанавливает картину окружающего мира лишь с точностью до подобия. Можно удалить Луну и Солнце от Земли в 10 раз, увеличив во столько же раз их размеры, и видимая с Земли картина останется такой же. Чтобы найти реальные размеры небесных тел, надо соотнести их с каким-то известным размером. Но из всех астрономических величин Аристарху пока известен только радиус земного шара R = 6400 км. Поможет ли это? Хоть в каком-то из видимых явлений, происходящих на небе, появляется радиус Земли? Не случайно говорят «небо и земля», имея в виду две несовместные вещи. И всё же такое явление есть. Это — лунное затмение. С его помощью, применив довольно хитроумное геометрическое построение, Аристарх вычисляет отношение радиуса Солнца к радиусу Земли, и цепь замыкается: теперь мы одновременно находим радиус Луны, радиус Солнца, а заодно и расстояния от Луны и от Солнца до Земли.
При лунном затмении Луна уходит в тень Земли. Спрятавшись за Землю, Луна лишается солнечного света, и, таким образом, перестает светить. Она не исчезает из вида полностью, поскольку небольшая часть солнечного света рассеивается земной атмосферой и доходит до Луны в обход Земли. Луна темнеет, приобретая красноватый оттенок (через атмосферу лучше всего проходят красные и оранжевые лучи). На лунном диске при этом отчетливо видна тень от Земли (рис. 6). Круглая форма тени еще раз подтверждает шарообразность Земли. Аристарха же интересовал размер этой тени. Для того, чтобы определить радиус круга земной тени (мы сделаем это по фотографии на рисунке 6), достаточно решить простое упражнение.
Упражнение 4. На плоскости дана дуга окружности. С помощью циркуля и линейки постройте отрезок, равный ее радиусу.
Выполнив построение, находим, что радиус земной тени примерно в раза больше радиуса Луны. Обратимся теперь к рисунку 7. Серым цветом закрашена область земной тени, в которую попадает Луна при затмении. Предположим, что центры окружностей S, Z и L лежат на одной прямой. Проведем диаметр Луны M1M2, перпендикулярный прямой LS. Продолжение этого диаметра пересекает общие касательные окружностей Солнца и Земли в точках D1 и D2. Тогда отрезок D1D2 приближенно равен диаметру тени Земли. Мы пришли к следующей задаче.
Задача 1. Даны три окружности с центрами S, Z и L, лежащими на одной прямой. Отрезок D1D2, проходящий через L, перпендикулярен прямой SL, а его концы лежат на общих внешних касательных к первой и второй окружностям. Известно, что отношение отрезка D1D2 к диаметру третьей окружности равно t, а отношение диаметров первой и третьей окружности равно ZS/ZL = κ. Найдите отношение диаметров первой и второй окружностей.
Если решить эту задачу, то будет найдено отношение радиусов Солнца и Земли. Значит, будет найден радиус Солнца, а с ним и Луны. Но решить ее не удастся. Можете попробовать — в задаче не достает одного данного. Например, угла между общими внешними касательными к первым двум окружностям. Но даже если этот угол был бы известен, решение будет использовать тригонометрию, которую Аристарх не знал (мы формулируем соответствующую задачу в упражнении 6). Он находит более простой выход. Проведем диаметр A1A2 первой окружности и диаметр B1B2 второй, оба — параллельные отрезку D1D2. Пусть C1 и С2 — точки пересечения отрезка D1D2 с прямыми A1B1 и А2В2соответственно (рис. 8). Тогда в качестве диаметра земной тени возьмем отрезок C1C2 вместо отрезка D1D2. Стоп, стоп! Что значит, «возьмем один отрезок вместо другого»? Они же не равны! Отрезок C1C2 лежит внутри отрезка D1D2, значит C1C2 < D1D2. Да, отрезки разные, но они почти равны. Дело в том, что расстояние от Земли до Солнца во много раз больше диаметра Солнца (примерно в 215 раз). Поэтому расстояние ZS между центрами первой и второй окружности значительно превосходит их диаметры. Значит, угол между общими внешними касательными к этим окружностям близок к нулю (в реальности он примерно 0,5°), т. е. касательные «почти параллельны». Если бы они были в точности параллельны, то точки A1 и B1совпадали бы с точками касания, следовательно, точка C1 совпала бы с D1, а C2 с D2, и значит, C1C2 = D1D2. Таким образом, отрезки C1C2 и D1D2 почти равны. Интуиция и здесь не подвела Аристарха: на самом деле отличие между длинами отрезков составляет менее сотой доли процента! Это — ничто по сравнению с возможными погрешностями измерений. Убрав теперь лишние линии, включая окружности и их общие касательные, приходим к такой задаче.
Задача 1′. На боковых сторонах трапеции А1А2С2С1 взяты точки B1 и В2 так, что отрезок В1В2 параллелен основаниям. Пусть S, Z u L — середины отрезков А1А2, B1B2 и C1C2 соответственно. На основании C1C2 лежит отрезок М1М2 с серединой L. Известно, что и . Найдите А1А2/B1B2.
Решение. Так как , то , а значит, треугольники A2SZ и M1LZ подобны с коэффициентом SZ/LZ = κ. Следовательно, A2SZ = M1LZ, и поэтому точка Z лежит на отрезке M1A2. Аналогично, Z лежит на отрезке М2А1 (рис. 9). Так как C1C2 = t·М1М2 и , то .
Далее, треугольники A2C2M1 и A2B2Z подобны. Их коэффициент подобия равен
Следовательно,
С другой стороны,
Значит, . Из этого равенства сразу получаем, что .
Итак, отношение диаметров Солнца и Земли равно , а Луны и Земли равно .
Подставляя известные нам величины κ = 400 и t = 8/3, получаем, что Луна примерно в 3,66 раза меньше Земли, а Солнце в 109 раз больше Земли. Так как радиус Земли R нам известен, находим радиус Луны Rl = R/3,66 и радиус Солнца Rs = 109R.
Теперь расстояния от Земли до Луны и до Солнца вычисляются в один шаг, это может быть сделано с помощью углового диаметра. Угловой диаметр β Солнца и Луны составляет примерно полградуса (если быть совсем точным, 0,53°). Как древние астрономы его измеряли, об этом речь впереди. Опустив касательную ZQ на окружность Луны, получаем прямоугольный треугольник ZLQ с острым углом β/2 (рис. 10).
Из него находим , что примерно равно 215Rl, или 62R. Аналогично, расстояние до Солнца равно 215Rs = 23 455R.
Всё. Размеры Солнца и Луны и расстояния до них найдены.
Упражнения
5. Докажите, что прямые A1B1, A2B2 и две общие внешние касательные к первой и второй окружностям (см. рис. 8) пересекаются в одной точке.
6. Решите задачу 1, если дополнительно известен угол между касательными между первой и второй окружностью.
7. Солнечное затмение может наблюдаться в одних частях земного шара и не наблюдаться других. А лунное затмение?
8. Докажите, что солнечное затмение может наблюдаться только во время новолуния, а лунное затмение — только во время полнолуния.
9. Что происходит на Луне, когда на Земле происходит лунное затмение?
О пользе ошибок
На самом деле всё было несколько сложнее. Геометрия только формировалась, и многие привычные для нас еще с восьмого класса школы вещи были в то время совсем не очевидны. Аристарху потребовалось написать целую книгу, чтобы изложить то, что мы изложили на трех страницах. И с экспериментальными измерениями тоже всё было непросто. Во-первых, Аристарх ошибся с измерением диаметра земной тени во время лунного затмения, получив отношение t = 2 вместо . Кроме того, он, вроде бы, исходил из неверного значения угла β — углового диаметра Солнца, считая его равным 2°. Но эта версия спорная: Архимед в своем трактате «Псаммит» пишет, что, напротив, Аристарх пользовался почти правильным значением в 0,5°. Однако самая ужасная ошибка произошла на первом шаге, при вычислении параметра κ — отношения расстояний от Земли до Солнца и до Луны. Вместо κ = 400 у Аристарха получилось κ = 19. Как можно было ошибиться более чем в 20 раз? Обратимся еще раз к шагу 1, рисунок 3. Для того чтобы найти отношение κ = ZS/ZL, Аристарх измерил угол α = SZL, и тогда κ = 1/cos α. Например, если угол α был бы равен 60°, то мы получили бы κ = 2, и Солнце было бы вдвое дальше от Земли, чем Луна. Но результат измерения оказался неожиданным: угол α получался почти прямым. Это означало, что катет ZS во много раз превосходит ZL. У Аристарха получилось α = 87°, и тогда cos α =1/19 (напомним, что все вычисления у нас — приближенные). Истинное значение угла , и cos α =1/400. Так погрешность измерения менее чем в 3° привела к ошибке в 20 раз! Завершив вычисления, Аристарх приходит к выводу, что радиус Солнца равен 6,5 радиусов Земли (вместо 109).
Ошибки были неизбежны, учитывая несовершенные измерительные приборы того времени. Важнее то, что метод оказался правильным. Вскоре (по историческим меркам, т. е. примерно через 100 лет) выдающийся астроном античности Гиппарх (190 – ок. 120 до н.э.) устранит все неточности и, следуя методу Аристарха, вычислит правильные размеры Солнца и Луны. Возможно, ошибка Аристарха оказалась в конце концов даже полезной. До него господствовало мнение, что Солнце и Луна либо вовсе имеют одинаковые размеры (как и кажется земному наблюдателю), либо отличаются несильно. Даже отличие в 19 раз удивило современников. Поэтому не исключено, что, найди Аристарх правильное отношение κ = 400, в это никто бы не поверил, а может быть, и сам ученый отказался бы от своего метода, сочтя результат несуразным. Известный принцип гласит, что геометрия — это искусство хорошо рассуждать на плохо выполненных чертежах. Перефразируя, можно сказать, что наука в целом — это искусство делать верные выводы из неточных, или даже ошибочных, наблюдений. И Аристарх такой вывод сделал. За 17 веков до Коперника он понял, что в центре мира находится не Земля, а Солнце. Так впервые появилась гелиоцентрическая модель и понятие Солнечной системы.
Что в центре?
Господствовавшее в Древнем Мире представление об устройстве Вселенной, знакомое нам по урокам истории, заключалось в том, что в центре мира — неподвижная Земля, вокруг нее по круговым орбитам вращаются 7 планет, включая Луну и Солнце (которое тоже считалось планетой). Завершается всё небесной сферой с прикрепленными к ней звездами. Сфера вращается вокруг Земли, делая полный оборот за 24 часа. Со временем в эту модель многократно вносились исправления. Так, стали считать, что небесная сфера неподвижна, а Земля вращается вокруг своей оси. Затем стали исправлять траектории движения планет: круги заменили циклоидами, т. е. линиями, которые описывают точки окружности при ее движении по другой окружности (об этих замечательных линиях можно прочитать в книгах Г. Н. Бермана «Циклоида», А. И. Маркушевича «Замечательные кривые», а также в «Кванте»: статья С. Верова «Тайны циклоиды» №8, 1975, и статья С. Г. Гиндикина «Звездный век циклоиды», №6, 1985). Циклоиды лучше согласовывались с результатами наблюдений, в частности, объясняли «попятные» движения планет. Это — геоцентрическая система мира, в центре которой — Земля («гея»). Во II веке она приняла окончательный вид в книге «Альмагест» Клавдия Птолемея (87–165), выдающегося греческого астронома, однофамильца египетских царей. Со временем некоторые циклоиды усложнялись, добавлялись всё новые промежуточные окружности. Но в целом система Птолемея господствовала около полутора тысячелетий, до XVI века, до открытий Коперника и Кеплера. Поначалу геоцентрической модели придерживался и Аристарх. Однако, вычислив, что радиус Солнца в 6,5 раз больше радиуса Земли, он задал простой вопрос: почему такое большое Солнце должно вращаться вокруг такой маленькой Земли? Ведь если радиус Солнца больше в 6,5 раз, то его объем больше почти в 275 раз! Значит, в центре мира должно находиться Солнце. Вокруг него вращаются 6 планет, включая Землю. А седьмая планета, Луна, вращается вокруг Земли. Так появилась гелиоцентрическая система мира («гелиос» — Солнце). Уже сам Аристарх отмечал, что такая модель лучше объясняет видимое движение планет по круговым орбитам, лучше согласуется с результатами наблюдений. Но ее не приняли ни ученые, ни официальные власти. Аристарх был обвинен в безбожии и подвергся преследованиям. Из всех астрономов античности только Селевк стал сторонником новой модели. Больше ее не принял никто, по крайней мере, у историков нет твердых сведений на этот счет. Даже Архимед и Гиппарх, почитавшие Аристарха и развившие многие его идеи, не решились поставить Солнце в центр мира. Почему?
Почему мир не принял гелиоцентрической системы?
Как же получилось, что в течение 17 веков ученые не принимали простой и логичной системы мира, предложенной Аристархом? И это несмотря на то, что официально признанная геоцентрическая система Птолемея часто давала сбои, не согласуясь с результатами наблюдений за планетами и за звездами. Приходилось добавлять всё новые окружности (так называемые вложенные циклы) для «правильного» описания движения планет. Самого Птолемея трудности не пугали, он писал: «К чему удивляться сложному движению небесных тел, если их сущность нам неизвестна?» Однако уже к XIII веку этих окружностей накопилось 75! Модель стала столь громоздкой, что начали раздаваться осторожные возражения: неужели мир в самом деле устроен так сложно? Широко известен случай с Альфонсом X (1226–1284), королем Кастилии и Леона, государства, занимавшего часть современной Испании. Он, покровитель наук и искусств, собравший при своем дворе пятьдесят лучших астрономов мира, на одной из научных бесед обмолвился, что «если бы при сотворении мира Господь оказал мне честь и спросил моего совета, многое было бы устроено проще». Подобная дерзость не прощалась даже королям: Альфонс был низложен и отправлен в монастырь. Но сомнения остались. Часть из них можно было бы разрешить, поставив Солнце в центр Вселенной и приняв систему Аристарха. Его труды были хорошо известны. Однако еще много веков никто из ученых не решался на такой шаг. Причины были не только в страхе перед властями и официальной церковью, которая считала теорию Птолемея единственно верной. И не только в инертности человеческого мышления: не так-то просто признать, что наша Земля — не центр мира, а лишь рядовая планета. Все-таки для настоящего ученого ни страх, ни стереотипы — не препятствия на пути к истине. Гелиоцентрическая система отвергалась по вполне научным, можно даже сказать, геометрическим причинам. Если допустить, что Земля вращается вокруг Солнца, то ее траектория — окружность с радиусом, равным расстоянию от Земли до Солнца. Как мы знаем, это расстояние равно 23 455 радиусов Земли, т. е. более 150 миллионов километров. Значит, Земля в течение полугода перемещается на 300 миллионов километров. Гигантская величина! Но картина звездного неба для земного наблюдателя при этом остается такой же. Земля то приближается, то удаляется от звезд на 300 миллионов километров, но ни видимые расстояния между звездами (например, форма созвездий), ни их яркость не меняются. Это означает, что расстояния до звезд должны быть еще в несколько тысяч раз больше, т. е. небесная сфера должна иметь совершенно невообразимые размеры! Это, между прочим, осознавал и сам Аристарх, который писал в своей книге: «Объем сферы неподвижных звезд во столько раз больше объема сферы с радиусом Земля-Солнце, во сколько раз объем последней больше объема земного шара», т. е. по Аристарху выходило, что расстояние до звезд равно (23 455)2R, это более 3,5 триллионов километров. В реальности расстояние от Солнца до ближайшей звезды еще примерно в 11 раз больше. (В модели, которую мы представили в самом начале, когда расстояние от Земли до Солнца равно 10 м, расстояние до ближайшей звезды равно … 2700 километров!) Вместо компактного и уютного мира, в центре которого находится Земля и который помещается внутри относительно небольшой небесной сферы, Аристарх нарисовал бездну. И эта бездна испугала всех.
Венера, Меркурий и невозможность геоцентрической системы
Между тем невозможность геоцентрической системы мира, с круговыми движениями всех планет вокруг Земли, может быть установлена с помощью простой геометрической задачи.
Задача 2. На плоскости даны две окружности с общим центром О, по ним равномерно движутся две точки: точка М по одной окружности и точка V по другой. Докажите, что либо они двигаются в одном направлении с одинаковой угловой скоростью, либо в некоторый момент времени угол MOV тупой.
Решение. Если точки движутся в одном направлении с разными скоростями, то через некоторое время лучи ОМ и OV окажутся сонаправленными. Далее угол MOV начинает монотонно возрастать до следующего совпадения, т. е. до 360°. Следовательно, в некоторый момент он равен 180°. Случай, когда точки движутся в разных направлениях, рассматривается так же.
Теорема. Ситуация, при которой все планеты Солнечной системы равномерно вращаются вокруг Земли по круговым орбитам, невозможна.
Доказательство. Пусть О — центр Земли, М — центр Меркурия, а V — центр Венеры. Согласно многолетним наблюдениям, у Меркурия и Венеры разные периоды обращения, а угол MOV никогда не превосходит 76°. В силу результата задачи 2 теорема доказана.
Конечно, древние греки неоднократно встречались с подобными парадоксами. Именно поэтому, чтобы спасти геоцентрическую модель мира, они заставили планеты двигаться не по окружностям, а по циклоидам.
Доказательство теоремы не совсем честно, поскольку Меркурий и Венера вращаются не в одной плоскости, как в задаче 2, а в разных. Хотя плоскости их орбит почти совпадают: угол между ними — всего несколько градусов. В упражнении 10 мы предлагаем вам устранить этот недостаток и решить аналог задачи 2 для точек, вращающихся в разных плоскостях. Другое возражение: может быть, угол MOV бывает тупым, но мы этого не видим, поскольку на Земле в это время день? Принимаем и это. В упражнении 11 нужно доказать, что для трех вращающихся радиусов всегда настанет момент времени, когда они будут образовывать друг с другом тупые углы. Если на концах радиусов — Меркурий, Венера и Солнце, то в этот момент времени Меркурий и Венера будут видны на небе, а Солнце — нет, т. е. на земле будет ночь. Но должны предупредить: упражнения 10 и 11 значительно сложнее задачи 2. Наконец, в упражнении 12 мы предлагаем вам, ни много ни мало, вычислить расстояние от Венеры до Солнца и от Меркурия до Солнца (они, конечно, вращаются вокруг Солнца, а не вокруг Земли). Убедитесь сами, насколько это просто, после того, как мы узнали метод Аристарха.
Упражнения
10. В пространстве даны две окружности с общим центром О, по ним равномерно с разными угловыми скоростями движутся две точки: точка М по одной окружности и точка V по другой. Докажите, что в некоторый момент угол MOVтупой.
11. На плоскости даны три окружности с общим центром О, по ним равномерно с разными угловыми скоростями движутся три точки. Докажите, что в некоторый момент все три угла между лучами с вершиной О, направленными в данные точки, тупые.
12. Известно, что максимальное угловое расстояние между Венерой и Солнцем, т. е. максимальный угол между лучами, направленными с Земли к центрам Венеры и Солнца, равно 48°. Найдите радиус орбиты Венеры. То же — для Меркурия, если известно, что максимальное угловое расстояние между Меркурием и Солнцем равно 28°.
Последний штрих: измерение угловых размеров Солнца и Луны
Следуя шаг за шагом рассуждениям Аристарха, мы упустили лишь один аспект: как измерялся угловой диаметр Солнца? Сам Аристарх этого не делал, пользуясь измерениями других астрономов (по-видимому, не совсем верными). Напомним, что радиусы Солнца и Луны он смог вычислить, не привлекая их угловые диаметры. Посмотрите еще раз на шаги 1, 2 и 3: нигде значение углового диаметра не используется! Он нужен только для вычисления расстояний до Солнца и до Луны. Попытка определить угловой размер «на глазок» успеха не приносит. Если попросить несколько человек оценить угловой диаметр Луны, большинство назовут угол от 3 до 5 градусов, что в разы больше истинного значения. Сказывается обман зрения: ярко-белая Луна на фоне темного неба кажется массивной. Первым, кто провел математически строгое измерение углового диаметра Солнца и Луны, был Архимед (287— 212до н.э.) Он изложил свой метод в книге «Псаммит» («Исчисление песчинок»). Сложность задачи он осознавал: «Получить точное значение этого угла — дело нелегкое, потому что ни глаз, ни руки, ни приборы, при помощи которых производится отсчет, не обеспечивают достаточной точности». Поэтому Архимед не берется вычислить точное значение углового диаметра Солнца, он лишь оценивает его сверху и снизу. Он помещает круглый цилиндр на конце длинной линейки, напротив глаза наблюдателя. Линейка направляется на Солнце, и цилиндр придвигается к глазу до тех пор, пока он не заслонит собой Солнце полностью. Затем наблюдатель уходит, а на конце линейки отмечается отрезок MN, равный размеру человеческого зрачка (рис. 11).
Тогда угол α1 между прямыми МР и NQ меньше углового диаметра Солнца, а угол α2 = POQ — больше. Мы обозначили через PQ диаметр основания цилиндра, а через О — середину отрезка MN. Итак, α1 < β < α2 (докажите это в упражнении 13). Так Архимед находит, что угловой диаметр Солнца заключен в пределах от 0,45° до 0,55°.
Неясным остается, почему Архимед измеряет Солнце, а не Луну. Он был хорошо знаком с книгой Аристарха и знал, что угловые диаметры Солнца и Луны одинаковы. Луну же измерять гораздо удобнее: она не слепит глаза и границы ее видны отчетливее.
Некоторые древние астрономы измеряли угловой диаметр Солнца, исходя из продолжительности солнечного или лунного затмения. (Попробуйте восстановить этот способ в упражнении 14.) А можно сделать то же, не дожидаясь затмений, а просто наблюдая закат Солнца. Выберем для этого день весеннего равноденствия 22 марта, когда Солнце восходит точно на востоке, а заходит точно на западе. Это означает, что точки восхода Е и заката W диаметрально противоположны. Для земного наблюдателя Солнце движется по окружности с диаметром EW. Плоскость этой окружности составляет с плоскостью горизонта угол 90° – γ, где γ — географическая широта точки М, в которой находится наблюдатель (например, для Москвы γ = 55,5°, для Александрии γ = 31°). Доказательство приведено на рисунке 12. Прямая ZP — ось вращения Земли, перпендикулярная плоскости экватора. Широта точки М — угол между отрезком ZP и плоскостью экватора. Проведем через центр Солнца S плоскость α, перпендикулярную оси ZP.
Плоскость горизонта касается земного шара в точке М. Для наблюдателя, находящегося в точке М, Солнце в течение дня движется по окружности в плоскости α с центром Р и радиусом PS. Угол между плоскостью α и плоскостью горизонта равен углу MZP, который равен 90° – γ, поскольку плоскость α перпендикулярна ZP, а плоскость горизонта перпендикулярна ZM. Итак, в день равноденствия Солнце заходит за горизонт под углом 90° – γ. Следовательно, во время заката оно проходит дугу окружности, равную β/cos γ, где β — угловой диаметр Солнца (рис. 13). С другой стороны, за 24 часа оно проходит по этой окружности полный оборот, т. е. 360°.
Получаем пропорцию где Т — продолжительность заката (единица измерения — час). Зная γ и измерив время Т, находим β = 0,53°.
В некоторых источниках сообщается легенда о том, что одним из них был друг Эратосфена — великий Архимед. Неизвестно, знал ли Аристарх об измерении Эратосфена или пользовался другим значением радиуса Земли. Это не так важно, поскольку он брал радиус Земли в качестве единицы длины. Именно шесть, а не девять, поскольку Уран, Нептун и Плутон были открыты гораздо позже. Совсем недавно, 13 сентября 2006 года, по решению Международного астрономического союза (IAU) Плутон лишился статуса планеты. Так что планет в Солнечной системе теперь восемь. Истинной причиной опалы короля Альфонса была, видимо, обычная борьба за власть, но его ироничное замечание об устройстве мира послужило веским поводом для его недругов.
Ответы | Урок 7. Видимое движение Солнца и Луны — Астрономия, 11 класс
1. Используя карту звездного неба, укажите, через какие созвездия проходит годовой путь Солнца
Вариант 1.
Начните перечень созвездий с точки весеннего равноденствия.
Рыба, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей.
Вариант 2.
Начните перечень созвездий с точки осеннего равноденствия.
Дева, Весы, Скорпион, Стрелец, Козерог, Водолей, Рыба, Телец, Близнецы, Рак.
2. Запишите и объясните формулу, по которой вычисляется высота Солнца в полдень (или в верхней кульминации)
$h_☉ = (90° — φ) + δ_☉$, где $h_☉$ — высота Солнца; $φ$ — широта местности, где производятся наблюдения; $δ_☉$ — склонение Солнца на момент наблюдения.
3. Заполните пустые клетки и недописанные даты в таблице
4. Закончите предложения
Синодический месяц — это период смены лунных фаз, он длится 29 суток.
Сидерический месяц — это полный оборот вокруг Солнца, он длится 27,3 суток.
Луна всегда обращена к Земле одним и тем же полушарием, так как за такое же время делает один оборот вокруг своей оси.
5. Используя рисунок 7.1, изобразите вид Луны (в положениях 1—8) и укажите названия ее фаз (в положениях 1, 3, 5, 7)
6. Рассмотрите рисунки 7.2 и 7.3 и укажите для каждого случая, в какой стороне горизонта и в какое время суток наблюдается Луна. (Наблюдатель находится в Северном полушарии Земли.)
Наблюдаемая картина | В какой стороне горизонта наблюдается | Время суток |
Восточная | Утро | |
Западная | Вечер |
7. Дополните схему возникновения солнечных и лунных затмений (рис. 7.4) необходимыми построениями и обозначьте на ней тени и полутени. Руководствуясь схемой, объясняющей возникновение затмений, закончите предложения
Когда Луна попадает в тень Земли, происходит полное лунное затмение.
Когда Луна попадает в полутень Земли, происходит частичное лунное затмение.
Полное солнечное затмение наблюдается, если диск Солнца будет целиком закрыт Землёй.
Частное солнечное затмение наблюдается, если на Солнце попадает полутень от Луны.
Кольцеобразное затмение Солнца наблюдается, если в момент затмения диск Луны окажется слишком малым, чтобы полностью покрыть Солнце.
Затмения не наблюдаются каждый месяц, так как плоскости орбит Земли и Луны должны пересекаться под углом 5°09′.
8. На рисунках 7.5 и 7.6 стрелками укажите, с какого края полной Луны начинается лунное затмение. С какого края диска Солнца начинается солнечное затмение? (Наблюдатель в обоих случаях находится в Северном полушарии Земли.) Какова максимальная продолжительность фазы полного затмения Луны и максимальная продолжительность полного затмения Солнца?
На схеме Луны (рис. 7.5) дорисуйте стрелку, которая указывает вправо; на схеме Солнца (рис. 7.6) дорисуйте стрелку, указывающую влево.
Максимальная продолжительность полного лунного затмения: 11 ч 40 м
Максимальная продолжительность полного солнечного затмения: 7 мин 40 с
Sun, Moon and Earth Drawing Бесплатно скачать для Windows
6 Ян Рёссл 12 Бесплатное ПО
Earth Watch — Google Earth Image Analysis — это подключаемый модуль для Google Earth.
52 Fabricant par défaut 4 466 Бесплатное ПО
Drawing for Children — это приложение для рисования, специально разработанное для детей.
Д-р Эрхард Регенер 48 Условно-бесплатное ПО
Sun-Moon-Calendar вычисляет заходы, восходы и фазы солнца и луны.
Пал Сцилард 9 Условно-бесплатное ПО
Эта программа превращает ваш рабочий стол в чудо. Он отображает Солнце и Луну, как вы….
67 Douglas Software 55 Условно-бесплатное ПО
Программа для определения положения Солнца / Луны из любого места и времени (1900-2049).
1 Виджеты Opera 5 Бесплатное ПО
Информация о заходах и восходах Солнца и Луны для текущего местоположения пользователя.
7art-screensavers.com Студия разработки программного обеспечения 14 Бесплатное ПО
Часы Солнца и Луны — это волшебное воплощение всех сил.
4 Корпорация Stardock 145 Коммерческий
Продолжение стратегии в реальном времени Earth 2150.
MysticBoard.com
Это комплексное и продвинутое программное обеспечение для расчета фаз Луны.
RateMyScreensaver 1
Бесплатная заставка, содержащая 19 сюрреалистических изображений Луны.
46 3D чудеса 27 Условно-бесплатное ПО
Замечательная заставка, которая показывает Луну под разными углами в 3D.
1 Краулер, ООО 300 Бесплатное ПО
Совершите путешествие по планете Земля! Загрузите БЕСПЛАТНУЮ заставку 3D Земля!
7art-screensavers.com Студия разработки программного обеспечения 4 Условно-бесплатное ПО
Заставка3D Moon Base отправит вас в путешествие на Луну.
12 3Планесофт 912 Условно-бесплатное ПО
Earth 3D Screensaver перенесет вас в космическое путешествие вокруг нашей планеты.
Скайхаунд (CapellaSoft) 26 Бесплатное ПО
Planet Vistas отображает точное моделирование Солнца, Луны и планет.
47 Абекедарные системы 51 Бесплатное ПО
Вычисляет время восхода, захода и прохождения солнца, луны и планет.
39 3D чудеса 17 Условно-бесплатное ПО
Потрясающая трехмерная заставка с изображением Земли, Солнца и Луны, которая показывает время во всем мире!
58 Гэри Ньюджент 60 Условно-бесплатное ПО
Он показывает время восхода, прохождения и захода как для Луны, так и для Солнца.
CCDWare, Ltd 10 Бесплатное ПО
Удобная утилита для отображения эфемерид солнца и луны.
Pangolin Communications 20 Условно-бесплатное ПО
Время восхода и захода Солнца и Луны с временами морских и гражданских сумерек.
ООО «Системы менеджмента и технологий» 8 Бесплатное ПО
Показывает приливы, солнце и луну, время восхода и захода солнца для всего побережья Новой Зеландии.
INOVE, с.r.o. 15 Бесплатное ПО
Показывает положение Солнца и Луны в зависимости от вашего местоположения.
54 Лонггейм 3 264 Условно-бесплатное ПО
Заставка / программа, отображающая вращение планеты Земля вокруг Солнца.
50 PocketWatch Игры 4 Условно-бесплатное ПО
В Venture Arctic игрок управляет силами земли, солнца и воды.
Солнце, Луна и Земля | Etsy
Солнце, луна и земля | EtsyЧтобы предоставить вам лучший опыт, мы используем файлы cookie и аналогичные технологии для повышения производительности, аналитики, персонализации, рекламы и для улучшения работы нашего сайта. Хотите узнать больше? Прочтите нашу Политику использования файлов cookie. Вы можете изменить свои предпочтения в любое время в настройках конфиденциальности.
Etsy использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший опыт, включая такие вещи, как:
- основные функции сайта
- обеспечение безопасных, безопасных транзакций
- безопасный вход в учетную запись
- запоминание учетной записи, браузера и региональных настроек
- запоминание настроек конфиденциальности и безопасности
- анализ посещаемости и использования сайта
- персонализированный поиск, контент и рекомендации
- помогает продавцам понять свою аудиторию
- , показ релевантной целевой рекламы на Etsy и за ее пределами
Подробную информацию можно найти в Политике Etsy в отношении файлов cookie и аналогичных технологий и в нашей Политике конфиденциальности.
Необходимые файлы cookie и технологии
Некоторые из используемых нами технологий необходимы для критически важных функций, таких как безопасность и целостность сайта, аутентификация учетной записи, настройки безопасности и конфиденциальности, данные об использовании и обслуживании внутреннего сайта, а также для правильной работы сайта при просмотре и транзакциях.
Настройка сайта
Файлы cookie и аналогичные технологии используются для улучшения вашего опыта, например:
- запомнить ваш логин, общие и региональные настройки
- персонализировать контент, поиск, рекомендации и предложения
Без этих технологий такие вещи, как персональные рекомендации, настройки вашей учетной записи или локализация, могут работать некорректно.Узнайте больше в нашей Политике в отношении файлов cookie и аналогичных технологий.
Персонализированная реклама
Эти технологии используются для таких вещей, как:
- персонализированная реклама
- , чтобы ограничить количество показов рекламы
- , чтобы понять использование через Google Analytics
- , чтобы понять, как вы попали на Etsy
- , чтобы продавцы понимали свою аудиторию и могли предоставить релевантную рекламу
Мы делаем это с партнерами по социальным сетям, маркетингу и аналитике (у которых может быть собственная собранная информация).Отказ не остановит вас от просмотра рекламы Etsy, но может сделать ее менее актуальной или более повторяющейся. Узнайте больше в нашей Политике в отношении файлов cookie и аналогичных технологий.
Воспользуйтесь всеми возможностями нашего сайта, включив JavaScript. Учить большеВолшебные, значимые предметы вы больше нигде не найдете.
( 2032 результата, с рекламой Учить больше Продавцы, которые хотят расширить свой бизнес и привлечь больше заинтересованных покупателей, могут использовать рекламную платформу Etsy для продвижения своих товаров. Вы увидите результаты рекламы, основанные на таких факторах, как релевантность и сумма, которую продавцы платят за клик. Учить больше. )СОЛНЕЧНАЯ СИСТЕМА — Тематические тексты
Главная → СОЛНЕЧНАЯ СИСТЕМА — Тематические текстыТекст 1
Вселенная содержит все, что существует — не только Землю и все, что на ней, но также все планеты, звезды и галактики, а также пространство между ними.Солнце в центре Солнечной системы — лишь одна из примерно 100 миллиардов звезд в нашей галактике или совокупности звезд, называемых Млечным путем. По оценкам астрономов, во Вселенной есть около 100 миллиардов других галактик. Большинство ученых считают, что Вселенная образовалась около 15 миллиардов лет назад в результате огромного взрыва, названного Большим взрывом. Они также думают, что Вселенная расширяется.
Текст 2
Солнце и девять планет, вращающихся вокруг него, составляют солнечную систему.Девять планет, притягиваемых к Солнцу его гравитацией, — это Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Солнце — самое тяжелое из этих тел.
Текст 3
Во Вселенной миллиарды звезд. Звезды — это массивные, наполненные энергией шары из огненных газов. Сила тяжести удерживает эти газы вместе. В ядре звезды атомы водорода соединяются вместе с образованием гелия в процессе, называемом ядерным синтезом. Энергия, генерируемая этим процессом, производит тепло и свет звезды.Коллекции звезд называются галактиками, и каждая галактика содержит много разных типов звезд.
Текст 4
Земля — одна из девяти планет Солнечной системы, которые вращаются вокруг Солнца. Из этих планет Земля является третьей ближайшей к Солнцу. Это единственная планета, на которой существует жизнь. Около 5 миллиардов лет назад облако газа и пыли начало конденсироваться в твердую массу — молодую Землю. Сначала эта масса была очень холодной, но позже она растаяла под действием радиоактивности.Тяжелые металлы собирались в центре, а камни плавали у поверхности. Спустя миллионы лет скалы образовали твердую корку, и появились океаны и атмосфера.
Текст 5
Воздух — это смесь газов, которая окружает Землю и поддерживает все живое на ней. Мы вдыхаем воздух, чтобы оставаться в живых, и полагаемся на него для получения тепла, так как без него огонь не может гореть. Слой воздуха, которым мы дышим, простирается всего на 7 миль над поверхностью Земли. Кислород и азот являются ключевыми элементами, а водяной пар, углекислый газ и другие газы составляют их общее количество.Количество водяного пара в воздухе варьируется и называется влажностью.
Текст 6
Из всех видов наибольшее влияние на окружающую среду оказывает человек. Некоторые виды нашей деятельности угрожают средам обитания в мире и, следовательно, биоразнообразию Земли (ее разнообразию растений и животных).